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The model-checking problem for higher-order recursive programs, expressed as higher-order
recursion schemes (HORS), and where properties are specified in monadic second-order logic
(MSO) has received much attention since it was proven decidable by Ong ten years ago. Every
HORS may be understood as a simply-typed λ-term G with fixpoint operators Y whose free
variables a, b, c . . . ∈ Σ are of order at most one. Following the principles of a Church encoding,
these variables provide the tree constructors of a ranked alphabet Σ, so that the normalization
of the recursion scheme G produces a typically infinite value tree 〈G〉 over this ranked alphabet.

In order to check whether a given MSO formula ϕ holds at the root of such a value tree 〈G〉,
a convenient and traditional approach is to run an equivalent automaton Aϕ over it. In the
specific case of MSO logic, the corresponding notion of automaton is provided by alternating
parity tree automata (APT), a kind of non-deterministic top-down tree automaton enriched with
alternation and coloring. Every run of such an automaton may be understood as a syntactic
proof-search of the validity of the formula ϕ over the value tree 〈G〉. A typical transition over
a binary symbol a ∈ Σ is of the following shape:

δ(q0, a) = (2, q2) ∨ ((1, q1) ∧ (1, q2) ∧ (2, q0))

When reading the symbol a in the state q0, the automaton Aϕ can either (1) drop the left
subtree of a, and explore the right subtree with state q2, or (2) explore twice the left subtree
of a in parallel, once with state q1 and the other time with state q2, and explore the right subtree
of a with state q0. Kobayashi observed that the transitions of an alternating tree automaton A
can be reflected by giving to the symbol a the following refined intersection type:

a : (∅ → q2 → q0) ∧ ((q1 ∧ q2)→ q0 → q0) (1)

Using intersection types in this way, Kobayashi constructs a type system where a higher-order
recursion scheme G is typed by a state q0 of the automaton A iff its value tree 〈G〉 is recognized
from that state q0. In order to recover the full expressive power of MSO logic, one needs to
adapt this correspondence theorem to alternating parity automata (APT), and thus to integrate
colors in the intersection type system. Recall that every state q of such an APT is assigned a
color Ω(q) ∈ N. This additional information is devised so that a run-tree of the APT Aϕ over
the value tree 〈G〉 proves the validity of the associated MSO formula ϕ iff, for every infinite
branch of the run-tree, the greatest color encountered infinitely often is even. Kobayashi and
Ong extended the original intersection type system in order to integrate this extra coloring
information.

In a series of recent papers [6, 7], we establish a tight and somewhat unexpected connection
between higher-order model-checking and linear logic, starting from a modal reformulation of
Kobayashi and Ong’s work. In particular, we show that their original type system can be
slightly altered (and in fact improved) in order to disclose the modal nature of colors, and
its connection to the exponential modality of linear logic. In our modal reformulation, the

∗The present note was published in the TYPES 2015 proceedings with a different title.
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refinement type (1) associated to the transition of an APT may be colored (or modalised) in
the following way:

a : (∅ → �c2 q2 → q0) ∧ ((�c1 q1 ∧�c2 q2)→ �c0 q0 → q0) (2)

where �c describes a family of modal operators, indexed by colors c ∈ N. The connection of
intersection types with linear logic comes from the linear decomposition of the intuitionistic
arrow

A⇒ B = !A ( B

which regards a program of type A ⇒ B as a program of type !A ( B which thus uses its
input !A only once in order to compute its output B ; but where the exponential modality
“ ! ” enables at the same time the program to discard or to duplicate this single input !A. In
the relational semantics of linear logic, the exponential modality ! is interpreted as a finite
multiset construction, so that the model keeps track of the number of times an argument is
called by the function. The relational semantics is called quantitative for that reason. We
translate in [5] the intersection type system originally devised by Kobayashi (restricted to the
simply-typed λ-calculus) into an equivalent intersection type system where intersection is non-
idempotent. Adapting a correspondence developped by Bucciarelli and Ehrhard [1, 2] between
indexed linear logic and the relational semantics of linear logic, we establish that the resulting
intersection type system computes the relational semantics of simply-typed λ-terms. At this
stage, there remains to extend the correspondence to the simply-typed λ-calculus with a fixpoint
operator Y . One conceptual difficulty is that the traditional interpretation of !A in the relational
semantics of linear logic is biased towards an inductive (rather than coinductive) interpretation
of the fixpoint operator Y . Technically speaking, this comes from the fact that the multisets
in !A are finite. For that reason, we develop an alternative relational semantics of linear logic
where the exponential modality noted A 7→  A is interpreted as the set M≤ω(A) of finite-
or-countable multisets of elements of A, see [6] for details. This alternative and “infinitary”
relational interpretation of linear logic enables us to establish a clean correspondence between
(1) the coinductive intersection type system originally constructed by Kobayashi (2) the run-
trees of an alternating tree automaton with coinductive acceptance condition (3) our “infinitary”
variant of the traditional relational semantics of linear logic. Put all together, these results
provide a semantic account of higher-order model-checking where the acceptance condition of
the underlying alternating tree automaton A is restricted however to the purely coinductive
case.

At this stage, there thus remained to capture the full power of the MSO logic. To that
purpose, we incorporated the family �c of modal operators mentioned earlier to our infinitary
relational semantics of linear logic. The key idea is that this extra coloring information living at
the level of the intersection type system reduces once reformulated at the level of the relational
semantics into a very simple and elementary comonad, defined as follows:

� A = Col ×A = &c∈Col A

where Col ⊆ N typically denotes the finite set of colors appearing in the alternating parity
tree automaton Aϕ associated to the MSO-formula ϕ. The existence of a distributive law
λ :  ◦2 ⇒ 2 ◦  enables us to compose the comonad 2 with the exponential modality  in
the original relational semantics, in order to obtain a new and “colored” exponential modality
A 7→  2A. In the resulting infinitary and colored relational model, the colored intersection
typing (2) has the following interpretation [[a]] of the symbol a ∈ Σ as semantic counterpart:

[[a]] = { ([], ([(c2, q2)], q0)) , ([(c1, q1), (c2, q2)], ([(c0, q0)], q0)) } (3)
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Note that the interpretation of the symbol a of the alternating parity tree automaton Aϕ is a
subset of the interpretation of o → o → o, where o is interpreted as the set Q in our colored
relational semantics:

[[a]] ⊆  2 o⊗  2 o( o = (M≤ω(Col ×Q))
2 ×Q

We then defined an inductive-coinductive fixpoint operator Y , based on the principles of alter-
nating parity tree automata: the fixpoint operator iterates finitely in the scope of an odd color,
and infinitely when the color is even, see [6] for details. This interpretation of the fixpoint oper-
ator Y based on parity may be also formulated at the level of intersection types: it corresponds
in that setting to the introduction of a fixpoint rule, together with an appropriate notion of
winning derivation tree formulated by the authors in [7]. Finally, we prove that a recursion
scheme G produces a tree accepted from q by Aϕ if and only if its colored relational semantics
contains q – or alternatively, if and only if there is a winning derivation typing G with q.

This connection with linear logic leads us to a new proof of the decidability of the “selection
problem” established by Carayol and Serre [3]. Our semantic proof of decidability [4] is based
on the construction of a finitary and colored semantics of linear logic, adapted this time from
the traditional qualitative semantics of linear logic based on prime-algebraic lattices and Scott-
continuous functions between them — rather than from its alternative quantitative relational
semantics. Interestingly, this qualitative semantics of linear logic corresponds to an intersection
type system with subtyping, formulated in particular in the work by Terui [9]. It should be
noted that the decidability of the “selection problem” implies in particular the decidability
result for MSO formulas established by Ong [8] ten years ago. This decidability result gives a
strong evidence of the conceptual as well as technical relevance of the connection which we have
established and developed [4, 5, 6, 7] between higher-order model-checking and linear logic1.
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1Although the papers mentioned here [4, 5, 6, 7] will be published this year, the truth is that it took us several
years of work to carry out the connection between higher-order model-checking and linear logic described in
this brief survey. The idea and the details of the connection were thus exposed in seminar talks and at various
stages of development in the past three years.
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