
DOWNWARD CLOSURES OF INDEXED LANGUAGES

GEORG ZETZSCHE
PROPOSAL FOR 25 MINUTE TALK

Abstractions. A fruitful idea in the analysis of complex systems is that of ab-
stractions: Instead of working with the original model, one considers a model that
has a simpler structure but preserves pertinent properties.

A prominent example of such an abstraction is the Parikh image, which is avail-
able whenever the semantics of a model is given as a formal language. If L is a
language over an alphabet X = {x1, . . . , xn}, then its Parikh image Ψ(L) consists
of all vectors (a1, . . . , an) ∈ Nn such that there is a w ∈ L in which xi occurs ai
times for i ∈ {1, . . . , n}. The Parikh image is a useful abstraction, provided that
for the languages L at hand, Ψ(L) can be described using simpler means than L
itself. This means, most applications of Parikh images are confined to situations
where Ψ(L) is semilinear (or, equivalently, definable in Presburger arithmetic). For
example, this is the case for context-free languages [10], languages accepted by blind
(or revesal-bounded) counter automata [7], and combinations thereof [1, 4, 6].

Of course, there are important types of languages that do not guarantee semi-
linearity of their Parikh image. For example, Parikh images of languages accepted
by higher-order pushdown automata are not semilinear in general: It is easy to
construct a second-order pushdown automaton for the language {a2n | n ≥ 0}.

Downward closures. However, there is an abstraction of languages that guar-
antees a simple description for every language whatsoever and still reflects im-
portant properties of the abstracted language—the downward closure. For words
u, v ∈ X∗, we write u � v if u = u1 · · ·un and v = v0u1v1 · · ·unvn for some
u1, . . . , un, v0, . . . , vn ∈ X∗. Then, the downward closure of L is defined as

L↓ = {u ∈ X∗ | ∃v ∈ L : u � v}.
In other words, the downward closure consists of the set of all (not necessarily
contiguous) subwords of members of L. It has the remarkable property that it is
regular for every set of words L ⊆ X∗, which is due to the fact that the subword
ordering � is a well-quasi-ordering [5].

Moreover, downward closures preserve useul information about the abstracted
language. Suppose L describes the behavior of a system that is observed through
a lossy channel, meaning that on the way to the observer, arbitrary actions can
get lost. Then, L↓ is the set of words received by the observer [3]. Hence, given
the downward closure as a finite automaton, we can decide whether two systems
are equivalent under such observations, and even whether one system includes the
behavior of another.

However, while we know that for every L, there exists a finite automaton for L↓,
it is not clear in general how to compute them. In fact, there are examples of lan-
guages classes for which downward closures are known not to be computable [2, 9].
For an overview of the language classes for which computability is known, see [11].

1



2 GEORG ZETZSCHE

Recently, a new approach to the computation of downward closures has been
proposed. For a wide range of language classes, the approach reduces the com-
putation to the simultaneous unboundedness problem (SUP) [11]. The latter asks,
given a language L ⊆ a∗1 · · · a∗n, whether for every k ∈ N, there are x1, . . . , xn ≥ k
with ax1

1 · · · axn
n ∈ L. In fact, this result can be used to compute downward clo-

sures for indexed languages. Since these coincide with those languages accepted by
second-order pushdown automata [8], we have the following.

Theorem 1. Downward closures are computable for second-order pushdown au-
tomata.

In this talk, I will sketch the method for computing downward closures of indexed
languages.

References

[1] P. Buckheister and G. Zetzsche. “Semilinearity and Context-Freeness of Lan-
guages Accepted by Valence Automata”. In: Proc. of the 38th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2013).
Vol. 8087. LNCS. Heidelberg: Springer-Verlag, 2013, pp. 231–242.

[2] H. Gruber, M. Holzer, and M. Kutrib. “The size of Higman-Haines sets”. In:
Theoretical Computer Science 387.2 (2007), pp. 167–176.

[3] P. Habermehl, R. Meyer, and H. Wimmel. “The Downward-Closure of Petri
Net Languages”. In: Proc. of the 37th International Colloquium on Automata,
Languages and Programming (ICALP 2010). Vol. 6199. LNCS. Heidelberg:
Springer-Verlag, pp. 466–477.

[4] M. Hague and A. W. Lin. “Model Checking Recursive Programs with Numeric
Data Types”. In: Computer Aided Verification. Vol. 6806. LNCS. Heidelberg:
Springer-Verlag, 2011, pp. 743–759.

[5] L. H. Haines. “On free monoids partially ordered by embedding”. In: Journal
of Combinatorial Theory 6.1 (1969), pp. 94–98.

[6] T. Harju, O. Ibarra, J. Karhumäki, and A. Salomaa. “Some Decision Problems
Concerning Semilinearity and Commutation”. In: Journal of Computer and
System Sciences 65.2 (2002), pp. 278–294.

[7] O. H. Ibarra. “Reversal-bounded multicounter machines and their decision
problems”. In: Journal of the ACM 25.1 (1978), pp. 116–133.

[8] A. N. Maslov. “Multilevel stack automata”. In: Problems of Information
Transmission 12.1 (1976), pp. 38–42.

[9] R. Mayr. “Undecidable problems in unreliable computations”. In: Theoretical
Computer Science 297.1-3 (2003), pp. 337–354.

[10] R. J. Parikh. “On Context-Free Languages”. In: Journal of the ACM 13.4
(1966), pp. 570–581.

[11] G. Zetzsche. An approach to computing downward closures. To appear in Proc.
of 42nd International Colloquium on Automata, Languages and Programming
(ICALP 2015). Full version available at http://arxiv.org/abs/1503.

01068. 2015.

Technische Universität Kaiserslautern, Fachbereich Informatik, Concurrency The-

ory Group

E-mail address: zetzsche@cs.uni-kl.de

http://arxiv.org/abs/1503.01068
http://arxiv.org/abs/1503.01068

	Abstractions
	Downward closures
	References

