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Abstract. The model checking problem for higher-order recursion schemes
has become an important object of study in connection with automated,
higher-order program verification. However, decision procedures that have
been demonstrated to scale effectively beyond a few hundred rules seem
elusive. We present a new algorithm, based on abstraction refinement,
which is designed to scale well to instances that consist of thousands of
rules and more. In common with previous approaches, our algorithm uses
an intersection type approach to the problem, but is novel in its ability
to reason both using types that characterise automaton acceptance and
types that characterise automaton rejection simultaneously.

1 Introduction

Higher-order model checking, or the model checking problem for trees generated
by higher-order recursion schemes (HORS), holds considerable promise for re-
search in higher-order program verification. Since HORS are simultaneously very
expressive, algorithmically well behaved [1], and accurately model higher-order
control flow, they are an appealing target for automatic verification procedures
for functional programs. However, although there are many ingenious algorithms
[2,3,4,5] that aim to solve the higher-order model checking problem on “practical”
examples, none have been demonstrated to be effective on any instance whose
scheme consists of over a few hundred rewrite rules. In contrast, we present an
algorithm whose implementation has been shown to scale up to 10,000 rewrite
rules and beyond.1

Our algorithm, which decides the HORS model checking problem with re-
spect to alternating trivial tree automata, has been designed from the outset to
be scalable. Since the inherent worst-case complexity of HORS model checking is
extreme (hyper-exponential in the order of the scheme), to have any chance at all
of solving non-trivial instances, one has to work in the belief that those instances
that are met in practice are not pathological. Hence, it is essential to ensure that
only work which is relevant to deciding the particular instance at hand is actually
computed. To help achieve this goal, our algorithm is based on an abstraction
refinement loop. In this way, initially only a relatively cheap but coarse-grained
approximation to the problem is processed and, as much as possible, detail is
1 For example, the order-2 benchmark G2,10000 of Kobayashi [2], which consists of 10006

rules, can be processed by our prototype implementation in around 40 seconds.



2 Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong

only added by successive iterations where the problem instance necessitates it.
Moreover, it can be shown that, assuming the order and arity of the scheme are
fixed, our algorithm runs in time which is bounded by a polynomial function of
the size of the scheme.

In common with many of the existing algorithms for higher-order model
checking, we adopt the intersection type approach which was first pioneered by
Kobayashi [6]. However, unlike all other approaches, we use intersection types to
characterise both property automaton acceptance and rejection, and our algo-
rithm reasons about both kinds of judgement simultaneously. Intersection types
are used as a representation of the current state of knowledge about the be-
haviours of the scheme. When two behaviours of the scheme are known to have
different types, then they will be distinguished by the abstraction. As more types
become known during successive iterations, more behaviours can potentially be
separated.

The rest of the article is structured as follows. In section 2 we fix nota-
tion and preliminary definitions. In section 3 the algorithm is motivated and
defined. In an appendix we present a guided run through of the algorithm on
an example instance. Due to constraints we have been unable to discuss our
prototype implementation, PREFACE, but a web-based interface to the tool,
the opportunity to download and to view benchmarking data is available at
http://mjolnir.cs.ox.ac.uk/web/preface. Proofs have been omitted but they will
appear, along with a more detailed exposition, in the forthcoming doctoral dis-
sertation of the first author.

2 Preliminaries

We assume throughout a denumerable set (F, G, H P) F of function symbols
and a disjoint, denumerable set (x, y, z P) X of variables.

Simple sorts. The simple sorts over the sort of trees o, denoted (κ P) S, are
formed by the grammar:

κ ::“ o | κ1 Ñ κ2

As usual, we use parentheses to disambiguate the structure of such expressions,
observing that the arrow associates to the right. The arity and order of a simple
sort are natural numbers defined as usual. If a simple sort has order 0 (and hence
has arity 0) we say that it is ground.

Raw terms. Let (a, b, c P) Σ be a set of atomic constants. The set of raw terms
over Σ, denoted (s, t, u, v P) TΣpF , X q, is defined by the grammar:

s, t ::“ x | F | c | s t

The free variables of a term t, denoted FVptq, is just the set of variables that
occur in t. A term t with FVptq empty is called closed and the set of all closed
terms is denoted TΣpFq. We denote the set of closed terms which, moreover,
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∆ $S s : κ1 Ñ κ2 ∆ $S t : κ1 (S-App)
∆ $S s t : κ2

(S-Fun)
∆, F : κ $S F : κ

sortpcq “ κ
(S-Cst)

∆ $S c : κ (S-Var)
∆, x : κ $S x : κ

system of simple sort assignment

contain no occurrences of function symbols by TΣ . In case the atomic constants
are said to be sorted we assert that there is an associated sorting function sort
which maps each constant c P Σ to a first-order sort in S.

Sorted terms. A sort environment ∆, is a finite, partial function from X YF to
S. A sort judgement is an expression of the form ∆ $S t : κ which is provable
in the system for simple sort assignment. A well-sorted term over S is just a
derivable judgement ∆ $S t : κ. Note that derivations of a given judgement are
unique.

Recursion Schemes. A higher-order recursion scheme (HORS) G is a tuple
xΣ, N , R, Sy in which:

– The alphabet of terminal symbols is finite set of first-order, sorted constants.
– The alphabet of non-terminal symbols, (F, G, H P) N , is a finite set of sorted

constants, disjoint from Σ.
– The set rewrite rules, R, is a function mapping each non-terminal symbol F

of sort κ1 Ñ ¨ ¨ ¨ Ñ κn Ñ o to an expression λx1 ¨ ¨ ¨ xn. t, such that:

x1 : κ1, ¨ ¨ ¨ , xn : κn $S t : o

is a provable judgement in the simple sort system.
– The start symbol, S, is a distinguished non-terminal symbol.

Each recursion scheme is assigned an order which is given by the maximum
order of any of its non-terminal symbols. The value tree of a scheme G, denoted
TreepGq is the (possibly infinite) term tree obtained by fair rewriting of the start
symbol, ad infinitum.

Labelled trees Let A be a set without restriction. An A-labelled tree is a partial
function T : N˚ Ñ A whose domain is prefix closed. In case the set A is ranked,
that is, each symbol a P A has a specified arity aritypaq P N, then there is a
corresponding notion of ranked tree.
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Positive Boolean formulae. Given a finite set X, the positive Boolean formulas
over X, denoted (φ P) B`pXq, are defined by the following grammar:

φ ::“ t | f | x | φ1 ^ φ2 | φ1 _ φ2

Given a positive Boolean formula φ, an assignment is a finite subset S of X. An
assignment S is said to be a satisfying assignment for φ, written S |ù φ, when
assigning t to elements of S and f to elements of XzS makes φ true.

Alternating trivial tree automata. An alternating trivial tree automaton (ATT)
A is a tuple xΣ, Q, δ, q0, F y in which:

– The signature, pa, b, c Pq Σ, is a finite set of ranked constants.
– The state space, pq Pq Q, is a finite set.
– The transition function, δ, is a function in Πpq,aqPQˆΣ ¨ B`pr1..aritypaqsˆQq.
– The initial state, q0, is a distinguished element of Q.
– The accepting states, F are either all of Q or empty.

In case F = Q, we say that the ATT has a trivial acceptance condition, otherwise
F “ H and we say that it has a co-trivial acceptance condition.

Given a Σ-ranked and labelled tree T , a run tree on T is a pdompT q ˆ Qq-
labelled, unranked tree R satisfying the following conditions:

(APT-1) Rpεq “ pε, q0q
(APT-2) For all w P N˚, if Rpwq “ pw1, qq then there is some set S that satisfies

δpq, T pw1qq and, for all pi, q1q P S, there exists some j P N such that
Rpw ¨ jq “ pw1 ¨ i, q1q.

We say that a run tree R is accepting just if, on every branch of R, there is some
state q P F which occurs infinitely often. The language of an ATT A, LpAq, is
the set of Σ-ranked and labelled trees T for which there exists an accepting run-
tree on T . We define the complement of A, denoted Ac, as usual for alternating
tree automata. Note that the complement of an ATT with a trivial acceptance
conditition is an ATT with a co-trivial acceptance condition. We define AK as
the automaton A augmented with additional transitions so as to accept the
distinguished symbol K from every state.

Intersection types. In what follows fix an ATT A. The intersection types over
A, denoted IA, are defined simultaneously with the strict types over A by the
following grammar:

(Strict Types) τ, θ ::“ q | σ Ñ θ

(Intersection Types) σ ::“
Źn
i“1 θi

in which q P Q and n ě 0. By way of short-hand, we will typically write J for
the empty intersection

Ź

H, an intersection
Ź2
i“1 θi containing two elements

infix as θ1^θ2 and an intersection
Ź

tθu of the singleton set containing θ simply
as θ. By this abuse we will typically consider the strict types as a subset of the
intersection types.
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Γ $ s :
Źn

i“1 τi Ñ τ Γ $ t : τi (i P r1..ns)
(T-App)

Γ $ s t : τ

S |ù δpq, cq
(T-Cst)

Γ $ c :
Ź

pS|1q Ñ ¨ ¨ ¨ Ñ
Ź

pS|nq Ñ q

(T-Var)
Γ, x :

Źn
i“1 τi $ x : τi

(T-Fun)
Γ, F :

Źn
i“1 τi $ F : τi

system of intersection type assignment

Intersection type environment. An intersection type environment Γ is a finite,
partial function from FYX to IA. We will often view type environments as total
functions assigning Γ pF q “ J whenever F T dompΓ q. We will write Γ1 Z Γ2 for
the operation sometimes called type environment multiplication, which is just
the pointwise combination of environments defined by:

pΓ1 Z Γ2qpF q “ Γ1pF q ^ Γ2pF q

Finally, will write ΓæX for the restriction of Γ to only those typings which whose
subject lies in X.

Intersection type assignment. An intersection type judgement is an expression
of the form Γ $ t : τ (with τ a strict type) whose derivations are defined
inductively by the system for intersection type assignment above. Note, that in
that system, we use the notation S|i to denote the restriction of the set of pairs
S to just those pairs whose first component is exactly i. Given an intersection
type environment Γ and a term t, we define the set of all strict types assignable
to t under Γ by:

TpΓ qptq “ tτ | Γ $ t : τu

Intersection refinement types. The intersection refinement types over Q are those
judgements σ :: κ, pronounced “σ refines κ” which are provable in the system
of kind assignment below. The strict refinement types over Q are defined as the
obvious restriction of this system. We lift the refinement relation to environments
by writing Γ :: ∆ just if, for all F : σ P Γ , there is a typing F : κ P ∆ and σ :: κ.

Intersection type consistency. We say that an intersection type environment Γ
is (G,A)-consistent just if, for each typing F : σ P Γ such that F P dompN q,
there is a possibly infinite witness, rooted at Γ Ź F : σ, and built according to
the following system:
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(K-Bas)q :: o
σ :: κ1 θ :: κ2 (K-Arr)
σ Ñ θ :: κ1 Ñ κ2

τi :: κ (i P r1..ns)
(K-Int)Źn

i“1 τi :: κ

system of kind assignment

RpF q “ λx1 . . . xn. t
Γ, x1 : σ1, . . . , x1 : σn $ t : q
Γ ŹG : σ (for each G : σ P Γ q
Γ Ź F : σ1 Ñ ¨ ¨ ¨ Ñ σn Ñ q

Γ 1 Ď Γ

Γ 1 Ź F : τi (for each i P r1..ns)
Γ Ź F :

Źn
i“1 τi

Similarly, we say that an intersection type environment Γ is (G,A)-co-consistent
just if, for each typing F : σ P Γ there is a strictly finite witness built from the
above system. The next theorem follows from Kobayashi and Ong [7].

Theorem 1. Fix a scheme G and ATT A.

(i) TreepGq P LpAKq iff exists pG, Aq-consistent Γ :: N and S : q0 P Γ .
(ii) TreepGq P LppAKqcq iff exists pG, Acq-co-consistent Γ :: N and S : q0 P Γ .

3 An abstraction refinement algorithm

In the following we present an algorithm that attempts to prove both of TreepGq P
LpAKq and TreepGq P LppAKqcq simultaneously using the characterisation given
in Theorem 1. To this end, the algorithm constructs an eventually stable se-
quence of pairs of intersection type environments, called contexts, of the form
xΓD, Γ@y with ΓD (G,A)-consistent and Γ@ (G,Ac)-co-consistent. In the limit, ex-
actly one of the environments is guaranteed to contain the typing S : q0, which
will decide the model checking problem one way or the other. In iteration i`1, an
abstraction of the behaviour of the scheme is constructed which is a function of
the type information contained in context xΓ iD, Γ i@y. This type information deter-
mines when the abstraction should or should not distinguish different instances
calls to the same non-terminal symbol. Once the abstraction is constructed, it
is divided up into three distinct regions. The accepting region contains those
behaviours which result in trees that are accepted by the property automaton.
The rejecting region contains those behaviours which result in trees that are
rejected by the property automaton (i.e. accepted by the complement of the
property automaton). Finally, the unknown region contains the remaining be-
haviours of the abstraction, about which nothing is yet certain. Now, from these
regions can be extracted new type information. Naturally, the types extracted
from the accepting region contribute to Γ i`1

D and the types extracted from the
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rejecting region contribute to Γ i`1
@ . It is a fact that, on every non-final iteration

i, some genuinely new, rejection type information is contributed to Γ i`1
@ , though

the same is not true of Γ i`1
D and acceptance type information. If either of the

successor environments contain the typing S : q0 then the algorithm terminates
or else otherwise proceeds onto the next iteration. Since new type information
is contributed to Γ@ on every iteration, and there is only a finite amount of
type information which can be contributed in total, this process cannot continue
forever.

3.1 Construction of abstraction

Typed variables. The main mechanism for abstraction will be a set of typed vari-
ables. By means of an additional set of variable-term bindings (to be described
in the sequel) each variable exists as an abstraction for the set of terms that can
be obtained from it by repeated substitution according to the bindings. Each
variable has three pieces of associated type information: an acceptance type, a
rejection type and a sort. An important part of the algorithm lies in ensuring
that type information is invariant across the abstraction, i.e. if a variable ab-
stracts a set of terms, then every term in the set shares the same acceptance
type, rejection type and sort as the variable. The association of a variable with
its type information is made precise in the following.

Definition 1. Let var be a bijection, mapping the finite set of triples of the form
pσA, σR, κq consisting of kinded types σA :: κ and σR :: κ to a finite set of term
variables Y Ď X . Given such a variable y P Y, we will write Apyq for the first
component of var´1pyq, Rpyq for the second and Kpyq for the third.

Type context. The algorithm is ultimately concerned with constructing a pair
of type environments xΓD, Γ@y such that ΓD is (G,A)-consistent and Γ@ (G,Ac)-
co-consistent. Hence, we will speak of ΓD as the “acceptance” type environment
and Γ@ as the “rejection” type environment. Furthermore, we stipulate that every
such pair of environments, which we shall call a type context, understands the
basic assumptions we have made about the typed variables, i.e. that the type
information contained in A and R (as defined in Definition 1, but viewed as type
environments for the typed variables) is also contained in ΓD and Γ@ respectively.

Definition 2. A type context C “ xΓD, Γ@y is a pair of intersection type envi-
ronments for which all of the following conditions hold:

(i) ΓD :: N Y K
(ii) Γ@ :: N Y K

(iii) For all y P Y, ΓDpyq “ Apyq and Γ@pyq “ Rpyq

Abstract configurations. The abstraction itself is a finite representation of the
possibly infinite configuration graph, as defined in Kobayashi and Ong [7]. This
graph can be viewed as the state space of a kind of product construction between
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the reduction graph of the scheme and the transition graph of the property au-
tomaton. Hence, in the concrete configuration graph, one thinks of configurations
as pairs of a closed term (a reduct of the start symbol of the scheme) and a state
of the automaton, and the edges that connect them must respect the constraints
of both the reduction relation of the scheme and of the transition function of
the automaton. The configurations pt, qq should be viewed as a kind of primi-
tive assertion, that term t generates a tree which is accepted from state q. The
abstraction is always rooted at pS, q0q and the exploration of the state space
from this point corresponds to computing the necessary requirements, phrased
in terms of configurations, that must be satisfied in order that S generate a tree
accepted from state q0. In the abstract configuration graph, defined shortly, con-
figurations are still pairs of term and state, but now the term is abstract, which
in our setting means that it can contain free occurrences of typed variables.

Definition 3. An abstract configuration is a pair pt, qq in which N Y ty :
Kpyq | y P FVptqu $ t : o is a term and q P Q is a state. We say that a
term s is a prefix of a term t just if t has the form s t1 ¨ ¨ ¨ tn for some n P N. A
configuration prefix is a pair pc, sq in which c is a configuration of shape pt, qq
and s is a prefix of t.

Abstract typability. The central idea of the algorithm is that the type bindings
contained in the context constitute a concise summary of all the information
that has been gathered about the scheme and its reducts, as far as acceptance
by the property automaton is concerned. We will use the type context to judge
whether the assertions represented by configurations are true or not, based on
the following simple notion of typability.

Definition 4. Let C “ xΓD, Γ@y be a type context and let pt, qq be an abstract
configuration. We say that pt, qq is C-accepted just if ΓD $A t : q. We say that
pt, qq is C-rejected just if Γ@ $Ac t : q. We say that pt, qq is C-unknown just if
it is neither C-accepted nor C-rejected.

Until the very last iteration of the algorithm, the configuration pS, q0q, which
is the root of the abstract configuration graph, will be C-unknown to all the
associated contexts C, but after the last iteration enough type information will
have been contributed to the final context C 1 in order that pS, q0q will be seen
to be either C 1-accepting or C 1-rejecting.

Abstract configuration graph. The vertices of the abstract configuration graph are
either abstract configurations or finite sets of abstract configurations. Viewed as
an assertion, a vertex which is a finite set of configurations tps1, q1q, . . . , psn, qnqu
should be interpreted conjunctively, i.e. as requiring that for each i P r1..ns, si
generates a tree that is accepted from state qi.

Definition 5. An abstract configuration graph A is a tuple xV, E, By in which
xV, Ey is a directed graph and B is a finite set of mappings from variables y P Y
to terms t P TΣpY, N q. Each vertex v P V is either (i) an abstract configuration
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or (ii) a finite set of abstract configurations; and edges E Ď V ˆ V are unla-
belled. Given a typing context C, the abstract configuration graph of C, denoted
ACGpCq, is the abstract configuration graph xVC , EC , BCy defined inductively by
the system in Figure 3.1.

We consider motivation of each of the rules of the inductive definition in turn.
First, the rule (ACG1) defines the root of the graph. The premise ensures that,
if we already know that S generates a tree that is either accepted from q0 or
rejected from q0 then we need not do any state space exploration. This kind
of premise is common to many of the rules to ensure that work is not done
unnecessarily. In fact, one can state an invariant about the abstract typability
of the vertices in any such ACG:

Lemma 1. Let C be a context. For each configuration c P VC , c is C-unknown.

In case pS, q0q were C-accepting or C-rejecting, the graph would be empty and
the sequence of contexts will stabilise. Rule (ACG2) simulates the contraction
of a redex, but it does so in an abstract way. To apply the rule requires that
a configuration pF s1 ¨ ¨ ¨ sn, qq containing a redex occurs in the graph. The
consequence is that an abstraction of the contraction of that redex is added as
a new configuration. However, it is abstract because, rather than substituting
actual parameters for formals, typed variables are substituted for the formals.
These typed variables must be appropriate for the actuals that they abstract,
hence there is the constraint that, if yi abstracts actual parameter si, then it
had better be that yi “ varp

Ź

TpΓDqpsiq,
Ź

TpΓ@qpsiq, Kpsiqq. This ensures that
type information is invariant across the abstraction, in the following sense:

Proposition 1. Let C “ xΓD, Γ@y be a type context. For all y ÞÑ t P BC ,
TpΓDqpyq “ TpΓDqptq and TpΓ@qpyq “ TpΓ@qptq.

To properly define the abstraction in terms of the new variable yi, a binding
is added to BC with the effect that yi ÞÑ si. Consequently, we may think that
si is among the set of terms abstracted by typed variable yi. Rule (ACG3)
simulates a transition of the automaton on reading a terminal symbol, if there
is a terminal symbol-headed configuration pa s1 ¨ ¨ ¨ sn, qq in the graph, then its
children comprise all of the possible satisfying assignments to δpa, qq expressed
as sets of configurations. Recalling that each vertex that is a set of configurations
should be thought of conjunctively, the children of pa s1 ¨ ¨ ¨ sn, qq, taken as a
whole, should be thought of disjunctively – a s1 ¨ ¨ ¨ sn generates a tree accepted
from state q just if all the configurations contained in some child (satisfying
assignment) are shown to be accepted. Rule (ACG4) simply decomposes set
vertices into their constituent configurations. Therefore, the children of a set
vertex should be thought of conjunctively. Finally, rule (ACG5) ties the knot on
the abstraction by considering the case when a typed variable is in head position
in a configuration. In this case, the binding set is consulted and a node is added
for each binding to the appropriate variable. We will think of the children of
such a vertex conjunctively, for y s1 ¨ ¨ ¨ sn to generate a tree accepted from state
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(ACG1) Whenever all the following are true:
(i) pS, q0q is C-unknown

then all the following are also true:
– pS, q0q P VC

(ACG2) Whenever all the following are true:
(i) pF s1 ¨ ¨ ¨ sn , qq P VC

(ii) RpF q “ λx1 ¨ ¨ ¨ xn . t and N pF q “ κ1 Ñ ¨ ¨ ¨ Ñ κn Ñ o
(iii) ptry1{x1, ¨ ¨ ¨ , yn{xns, qq is C-unknown
(iv) for each i P r1..ns, yi “ varp

Ź

TpΓDqpsiq,
Ź

TpΓ@qpsiq, κiq

then all the following are also true:
– ptry1{x1, ¨ ¨ ¨ , yn{xns, qq P VC

– pF s1 ¨ ¨ ¨ sn , qq ÝÑ ptry1{x1, ¨ ¨ ¨ , yn{xns, qq P EC

– for each i P r1..ns: yi ÞÑ si P BC

(ACG3) Whenever all the following are true:
(i) pa s1 ¨ ¨ ¨ sn , qq P VC

(ii) S |ù δpq, aq
(iii) for all pi, q1q P S, psi, q

1
q is not C-rejected

then all the following are also true:
– tpsi, q

1
q | pi, q1q P Su P VC

– pa s1 ¨ ¨ ¨ sn , qq ÝÑ tpsi, q
1
q | q1 P σi ^ i P r1..nsu P EC .

(ACG4) Whenever all the following are true:
(i) tps1, q1q, . . . , psn, qnqu P VC

(ii) i P r1..ns
(iii) psi, qiq is not C-accepted
then all the following are also true:

– psi, qiq P VC

– tps1, q1q, . . . , psn, qnqu ÝÑ psi, qiq P EC

(ACG5) Whenever all the following are true:
(i) py s1 ¨ ¨ ¨ sn , qq P VC

(ii) y ÞÑ t P BC

then all the following are also true:
– pt s1 ¨ ¨ ¨ sn , qq P VC

– py s1 ¨ ¨ ¨ sn , qq ÝÑ pt s1 ¨ ¨ ¨ sn , qq P EC

Fig. 1. Abstract configuration graph construction.
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q, it had better be that every term that it abstracts generates a tree accepted
from state q.

Due to the abstraction at the point of contraction in (ACG2) and the lim-
ited substitution (only in head position) in (ACG5), it follows that ACGpCq is
necessarily a finite construction. In fact, it is possible to go further:

Lemma 2. Let C be a type context. Then the size of VC is bounded by a poly-
nomial function of the size of the scheme.

Classification of leaves. Let us consider for a moment the leaves of an ACG of a
type context C. It follows from the definition that the leaves all have a particular
form. Every leaf is a configuration headed by a non-terminal symbol, i.e. a redex.
Moreover, each such redex, if contracted using rule (ACG2), would yield a new
configuration which is already known to be either C-accepting or C-rejecting.
It is for this reason that such configurations are leaves: (ACG2) does not apply
because the third premise would be violated.

Definition 6. Given a type context C “ xΓD, Γ@y, the leaves (i.e. those vertices
that have no children) of ACGpCq can be classified into two sets:

(accepting leaves) These leaves are configurations of the form pF s1 ¨ ¨ ¨ sn, qq
where RpF q “ λx1 . . . xn. t, for each i P r1..ns, there is a typed variable yi
such that Apyiq “

Ź

TpΓDqpsiq and ΓD $A try1 {x1 , . . . , yn{xns : q.
(rejecting leaves) These leaves are configurations of the form pF s1 ¨ ¨ ¨ sn, qq

where RpF q “ λx1 . . . xn. t, for each i P r1..ns, there is a typed variable yi
such that Rpyiq “

Ź

TpΓ@qpsiq and Γ@ $Ac try1 {x1 , . . . , yn{xns : q.

Note that a rejecting leaf is not itself C-rejecting, since it is in the graph at all it
is necessarily C-unknown, but its contractum is C-rejecting. Similarly accepting
leaves are not themselves C-accepting, but the contractum of a rejecting leaf is
C-rejecting.

Lemma 3. Let C be a context. Every leaf in ACGpCq is accepting or rejecting.

3.2 The rejecting region

Region of rejection. The construction of an ACG from a given type context C is a
method for analysing the type context. By constructing the graph it is possible
to see where the information in the type context is deficient, and the main
tools for identifying and correcting deficiencies are the regions and region type
extraction respectively. Consider a rejecting leaf pF s1 ¨ ¨ ¨ sn, qq. By definition,
the contraction of this configuration using (ACG2) would yield a configuration
ptry1{x1, . . . , yn{xns, qq which is already C-rejecting. In other words, the tree
generated by any term of the form trt1{y1, . . . , tn{yns such that TpΓ@qpyiq Ď
TpΓ@qptiq for each i is sure to be rejected from state q. This follows, assuming
that Γ@ is co-consistent, since in such a case Γ@ $Ac trt1{y1, . . . , tn{yns : q.
Recalling Proposition 1, one such term is the first component of the rejecting
leaf we started with pF s1 ¨ ¨ ¨ sn, qq. Hence, because we know that the contractum



12 Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong

of this redex generates a tree that is rejected from state q0, necessarily the redex
itself generates a tree that is rejected from state q0. Through analogous reasoning
(and remembering the conjunctive and disjunctive interpretations of the child
relation in the graph), it is possible to identify other such vertices which are
necessarily rejecting. The collection of all such is called the rejecting region.

Definition 7. Given a context C, we define a subset RRpCq Ď VC of the vertices
of ACGpCq, called the rejecting region, inductively by:

(R1) If c is a rejecting leaf then c P RRpCq.
(R2) If tps1, q1q, . . . , psn, qnqu P VC and there exists j P r1..ns

such that psj , qjq P RRpCq then tps1, q1q, . . . , psn, qnqu P RRpCq.
(R3) If pF s1 ¨ ¨ ¨ sn, qq ÝÑ pt, qq P EC and pt, qq P RRpCq

then pF s1 ¨ ¨ ¨ sn, qq P RRpCq.
(R4) If pa s1 ¨ ¨ ¨ sn, qq P VC , let W be all v such that pa s1 ¨ ¨ ¨ sn, qq ÝÑ v P EC .

If, for all v PW , v P RRpCq, then pa s1 ¨ ¨ ¨ sn, qq P RRpCq.
(R5) If py s1 ¨ ¨ ¨ sn, qq P VC and, for all y ÞÑ t P BC , pt s1 ¨ ¨ ¨ sn, qq P RRpCq

then py s1 ¨ ¨ ¨ sn, qq P RRpCq.

Unless it is the final iteration of the algorithm, the rejecting region will always
be non-empty. An absence of rejecting vertices is an absence of counterexamples
in the abstraction.

Lemma 4. Let C be a type context and ACGpCq have no rejecting leaves. Then:

ACGpCq “ RApCq

Hence, in particular, RApCq will contain the root and so S : q0 will be added to
the accepting environment, signalling termination.

Rejection type extraction. The vertices in the rejecting region are those configu-
rations that we have identified, as a result of constructing ACGpCq, that should
be classified by our type information as rejecting, but are not – each is necessar-
ily C-unknown, since it exists in the graph. So the rejecting region represents a
weakness in the context. To remedy it, from the region we will extract new type
information to be added to the context ready for the next iteration.

Definition 8. Let C “ xΓD, Γ@y be a typing context and v P RRpCq. A witness
to the the membership of v in RRpCq is a proof tree T rooted at the statement
v P RRpCq and constructed according to the rules (R1) – (R5). We describe an
assignment of type environments MpT q to proof trees T , inductively on the shape
of the proof.

(i) If the proof is by (R1) then v is a configuration of the form pF s1 ¨ ¨ ¨ sn, qq,
and we set:

MpT q “ tF :
ľ

TpΓ@qps1q Ñ ¨ ¨ ¨ Ñ
ľ

TpΓ@qpsnq Ñ qu

(ii) If the proof is by (R2) then v is a set tps1, q1q, . . . , psn, qnqu and there is
an immediate sub-proof T 1 of psj , qjq. We set MpT q “ MpT 1q.
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(iii) If the proof is by (R3) then v is a configuration of the form pF s1 ¨ ¨ ¨ sn, qq
and, necessarily, there is an immediate sub-proof T 1 of pt, qq. We take for
Mpvq the environment:

tF :
ľ

TpΓ@ZMpT 1qqps1q Ñ ¨ ¨ ¨ Ñ
ľ

TpΓ@ZMpT 1qqpsnq Ñ quZMpT 1q

(iv) If the proof is by (R4) then v is of the form pa s1 ¨ ¨ ¨ sn, qq with children W .
For w PW , there is a sub-proof Tw. We set MpT q “

Ţ

tMpTwq | w PW u.
(v) If the proof is by (R5) then v is a configuration of the form py s1 ¨ ¨ ¨ sn, qq

and, necessarily, for each y ÞÑ t P BC there is an immediate sub-proof Tt of
pt s1 ¨ ¨ ¨ tn, qq. Let us write MpTyq simply as notation for the environment
given by

Ţ

tMpTtq | y ÞÑ t P BCu. We take for MpT q the environment:

tF :
ľ

TpΓ@ZMpTyqqps1q Ñ ¨ ¨ ¨ Ñ
ľ

TpΓ@ZMpTyqqpsnq Ñ quZMpTyq

Finally, we define a type environment, envRpCq, whose domain is a subset of
dompN q and which is extracted from RRpCq by:

envRpCqpF q “
ľ

tMpT qpF q | D c P V R
C with witness T u

So the types are extracted in an inductive fashion, starting from the leaves of
each witness and working backwards. It is this well-foundedness that ensures
that the types that are extracted are all “correct”:

Lemma 5. Let C “ xΓD, Γ@y be a type context. If Γ@ is (G,Ac)-co-consistent
then Γ@ Z envRpCq is (G,Ac)-co-consistent.

Furthermore, whenever the rejecting region is non-empty, then genuinely new
type information will be extracted. Taken together with Lemma 4, the following
result is the key measure of progress in the algorithm.

Lemma 6. Let C “ xΓD, Γ@y be a type context and ACGpCq have some rejecting
leaf. Then:

envRpCqzΓ@ “ H

3.3 The accepting region

Region of acceptance. In a similar way, the accepting region serves to identify
those configurations that should be classified as accepting by the type context,
but which are not. The rules by which vertices can be inferred to be accepting are
all complimentary to those that define the rejecting region (except for the case
of variable-headed nodes, which are conjunctive in both regions) and, indeed,
the construction is coinductive.

Definition 9. Given a typing context C, we define a subset RApCq Ď VC of the
vertices of ACGpCq, called the accepting region, coinductively by:
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(A1) If pF s1 ¨ ¨ ¨ sn, qq P RApCq and pF s1 ¨ ¨ ¨ sn, qq ÝÑ pt, qq P VC ,
then pt, qq P RApCq.

(A2) If pa s1 ¨ ¨ ¨ sn, qq P RApCq, then there is some satisfying assignment S to
δpq, aq such that tpsi, q1q | pi, q1q P Su P RApCq.

(A3) If tps1, q1q, . . . , psm, qmqu P RApCq then, @i P r1..ms, psm, qmq P RApCq.
(A4) If py s1 ¨ ¨ ¨ sn, qq P RApCq then, for all y ÞÑ t P BC , pt s1 ¨ ¨ ¨ sn, qq P RApCq.

However, unlike the case for accepting region there is no similar guarantee of
non-emptiness on non-final iterations. It is perfectly possible that on any given
iteration, the accepting region may be empty.

Acceptance type extraction. To extract new type information from the accepting
region we follow the approach of Kobayashi in [2] (a simplification of work in
Kobayashi and Ong [7]), in which types are assigned to prefixes of configurations
recursively based on the sort of the prefix.

Definition 10. Let C “ xΓD, Γ@y be a type context. To each prefix pc, sq of
each configuration c P RApCq, we assign a strict type extrpc, sq, which is defined
inductively over the structure of the sort of s.

(i) If s is of base sort, necessarily c is of the form ps, qq and set extrpc, sq “ q.
(ii) If s is of arrow sort, necessarily c is of the form ps t1 ¨ ¨ ¨ tn, qq. Let W be

the set of accepting region configurations with prefix t1. Set:

extrpc, sq “
ľ

TpΓDqpt1q ^
ľ

c1PW

extrpc1, t1q Ñ extrpc, s t1 q

We define a type environment, envApCq, whose domain is a subset of dompN q
and which is extracted from ARpCq by:

envApCqpF q “
ľ

tτ | D c P RApCq ¨ extrpc, F q “ τu

The acceptance types extracted in this way are all “correct”:

Lemma 7. Let C “ xΓD, Γ@y be a context. If ΓD is (G,A)-consistent then also
ΓD Z envApCq is (G,A)-consistent.

3.4 Fixed point construction

Abstraction refinement. Finally, we are in a position to describe the overall iter-
ative abstraction refinement loop. Starting from a context C0 that contains only
the type assumptions on typed variables used by the abstraction, on each itera-
tion the algorithm analyses the given context, say Ci, by constructing ACGpCiq;
it then identifies deficiencies in Ci by constructing regions and attempts to repair
those deficiencies by extracting new environments. Eventually, the type S : q0
will be extracted from one of the regions and the algorithm will terminate.



An Abstraction Refinement Approach to Higher-Order Model Checking 15

Definition 11. Recall A and R in Definition 1. The algorithm consists of con-
structing an eventually stable sequence of type contexts pCiqiPN as follows:

C0 “ xΓ 0
D , Γ

0
@ y “ xA, Ry

Ck`1 “ xΓ
k`1
D , Γ k`1

@ y “ xΓ kD Z envApCkq, Γ
k
@ Z envRpCkqy

with limit, say C “ xΓD, Γ@y. Then if q0 P ΓDpSq answer Yes and otherwise
answer No.

Since the initial environments Γ 0
D and Γ 0

@ are trivially (G,A)-consistent and
(G,Ac)-co-consistent respectively and since every extension of these environ-
ments by envA and envR preserves this property, it follows that the limit of the
sequence also enjoys the property and hence can be relied upon to decide the
model checking problem. Furthermore, since progress is guaranteed by Lemma
4 and Lemma 6, and the size of rejecting environment Γ@ is bounded by the
number of well-kinded types, we can state the following correctness theorem:

Theorem 2. For any G, A, the algorithm terminates and:

– Answer yes implies TreepGq P LpAKq.
– Answer no implies TreepGq T LpAKq.

Furthermore, since each ACG is, in the worst case, polynomial in the size
of the scheme (but in general, hyper-exponential in the order of the scheme)
and the amount of work involved in computing the ACG, the regions and type
extraction is polynomial in the size of the scheme, it follows that each iteration
of the algorithm takes, in the worst case, an amount of time polynomial in the
size of the scheme. Since the number of iterations is bounded by the number of
well-kinded types, which is also polynomial in the size of the scheme, it follows
that the algorithm as a whole is polynomial in the size of the scheme, assuming
its order and arity are taken to be fixed.
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A A guided run of the algorithm

By way of an example, we consider an instance of the HORS model checking
problem which is due to Kobayashi in [2] (though it is itself an encoding of a
problem considered by Might and Shivers in [8]).

A.1 Model checking instance

The instance consists of the following recursion scheme G:

S “ C1 Id
C1 “ λid. id Lam pC2 idq
C2 “ λid unused. id Lam1 C3
C3 “ λx. x end

Lam “ λx. flow x
Lam1 “ λx. x
Id “ λx k. k x

over the terminal symbols flow : oÑ o and end : o. The property is specified by
the following deterministic trivial automaton A which consists of a single state
q0 and a single transition δpq0, endq “ t. The idea is that the scheme will be
rejected just if a use of Lam flows to the result, i.e. if flow appears in TreepGq.
However, this is not the case, and hence TreepGq P LpAq is determined after
three iterations.

The typed variables that will be used throughout this example are as follows:

id67 : pJ, J, poÑ oq Ñ ppoÑ oq Ñ oq Ñ oq

k69 : pJ, J, poÑ oq Ñ oq

x68 : pJ, J, oÑ oq

x76 : pq0 Ñ q0, J, oÑ oq

x80 : pJ Ñ q0, J, oÑ oq

id84 : ppq0 Ñ q0q Ñ ppq0 Ñ q0q Ñ q0q Ñ q0, J, poÑ oq Ñ ppoÑ oq Ñ oq Ñ oq

the reader may wish to periodically consult this listing whilst following the con-
structions described below.

A.2 Iteration 1

In the first iteration, the initial context C0 just consists of xA, Ry. The graph
ACGpC0q is shown in Figure A.1. If you have the luxury of viewing this document
in colour, you will notice that variable-headed configurations are outlined in blue
and vertices in the rejecting region and accepting region are coloured red and
green respectively. The binding set for the graph is as shown below. Note that,
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(S, q0)

(C1 Id, q0)

(id67 Lam (C2 id67), q0)

(Id Lam (C2 id67), q0)

(k69 x68, q0)

(C2 id67 x68, q0) (C3 x68, q0)

(id67 Lam' C3, q0)

(Id Lam' C3, q0)

(x68 end, q0)

(Lam end, q0) (Lam' end, q0)

Fig. 2. Abstract configuration graph for iteration 1.
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as a small optimisation to aid readability, we will never add bindings of the form
y ÞÑ y to the set during graph construction.

x68 ÞÑ Lam1

x68 ÞÑ Lam
k69 ÞÑ C3
k69 ÞÑ C2
id67 ÞÑ Id

Since there is no intersection type information for any of the non-terminals
during the first iteration, there is no way to distinguish the two calls to the
non-terminal Id, once due to the contraction of Id Lam pC2 id67 q and again due
to the contraction of Id Lam1C3 . Consequently, the typed variable x68, which is
used to abstract arguments of type pJ, J, oÑ oq, confuses the two calls which
leads to the undesirable (and spurious) effect of having the redex Lam end occur
in a configuration in the graph. This configuration is a rejecting leaf, because
the configuration that would result from contracting the redex, which would be
of the form pflow y, q0q, is C-rejecting for any C, in essence because flow s is
rejected from A for any tree s.

The rejecting region is grown out of the set of rejecting leaves, but in this
case there is only one. Furthermore, because the parent of the rejecting leaf
is a variable-headed configuration whose children are not all themselves in the
rejecting region, the region is confined to just the rejecting leaf with which
it started. From this region we extract a single type, which is Lam : J Ñ

q0, representing the fact that when applied to an argument of no discernable
rejecting type (namely end), Lam will construct a tree which is rejected from
state q0.

Similarly, although it is not “grown” out of the accepting leaves in an induc-
tive construction, the rejecting region is, in this case, nevertheless restricted the
single accepting leaf pLam1 end, q0q. Consequently, the type inferred from this
leaf is Lam1 : q0 Ñ q0, representing the fact that we now know that when Lam1

is applied to a term of acceptance type q0 (namely end), it will generate a tree
which is accepted from state q0.

Hence, the context for the next iteration will be C1 “ xA Z tLam1 : q0 Ñ
q0u, RZ tLam : J Ñ q0uy, so that Lam and Lam1, which were confused on this
iteration, now have different types and hence will be distinguished by the next.
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(S, q0)

(C1 Id, q0)

(id67 Lam (C2 id67), q0)

(Id Lam (C2 id67), q0)

(k69 x76, q0)

(C2 id67 x76, q0) (C3 x76, q0)

(id67 Lam' C3, q0)

(Id Lam' C3, q0)

(k69 x80, q0)

(C2 id67 x80, q0)(C3 x80, q0)

Fig. 3. Abstract configuration graph for iteration 2.
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A.3 Iteration 2

The graph for the second iteration ACGpC1q is shown in Figure A.2. The binding
set for the graph is as shown below.

x80 ÞÑ Lam1

x76 ÞÑ Lam
k69 ÞÑ C3
k69 ÞÑ C2 id67
id67 ÞÑ Id

In this iteration, there are still spurious behaviours in the graph since, although
the first parameter in the calls to Id are now distinguished by their type, the two
terms C3 and C2 id67 , which appear as the second actual parameter in calls to
Id are confused since neither has any associated intersection type information.
In particular, as a result of this confusion the configuration pC3 x76 , q0q appears
in the graph. This configuration is a rejecting leaf since, if contracted, it would
yield a configuration pLam endq which is C1-rejecting. From this leaf, the new
rejection type C3 : pJ Ñ q0q Ñ q0 is added to the context. The accepting region
dominates the bottom left corner of the graph as it is depicted in the figure.
From the accepting region is extracted the set of acceptance types:

C3 : pq0 Ñ q0q Ñ q0

C2 : ppq0 Ñ q0q Ñ ppq0 Ñ q0q Ñ q0q Ñ q0q Ñ pq0 Ñ q0q Ñ q0

C2 : ppq0 Ñ q0q Ñ ppq0 Ñ q0q Ñ q0q Ñ q0q Ñ J Ñ q0

Id : pq0 Ñ q0q Ñ ppq0 Ñ q0q Ñ q0q Ñ q0

This ensures that in the following iteration, the term C3 and the term C2 id67
will no longer be confused, since in context C2: the first has rejection type pJ Ñ
q0q Ñ q0, whereas the second has no rejection type.

A.4 Iteration 3

The third iteration is the last (non-trivial) iteration of the algorithm when run-
ning on this instance. The graph ACGpC2q is depicted in Figure A.3. In this case,
the associated binding set is simply:

id84 ÞÑ Id

Here, the configuration pId Lam pC2 id84 q, q0q is an accepting leaf since, if it
were to be contracted it would yeild the configuration pC2 id84 Lamq which is
already known to be C2-accepting. Hence the construction of the graph is halted
prematurely. Since there are no rejecting leaves, it follows that the accepting
region is universal. Consequently, among the types extracted from the region is
the typing S : q0 which concludes the run of the algorithm with the answer Yes.
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(S, q0)

(C1 Id, q0)

(id84 Lam (C2 id84), q0)

(Id Lam (C2 id84), q0)

Fig. 4. Abstract configuration graph for iteration 3.
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