
Tutorial: Type-Based Analysis of Higher-Order
Programs

Niki Vazou1, Patrick M. Rondon2, Eric Seidel1, and Ranjit Jhala1

1UC San Diego 2Google

Abstract. We present LIQUIDHASKELL, a verifier for Haskell programs which
uses Liquid Types to reduce the verification of higher-order, polymorphic, re-
cursive programs over complex data types, into first-order Horn Clauses over
integers and booleans which are then solved using classical predicate abstraction.
In this tutorial, we will present an overview of this approach, and then describe
a simple technique called abstract refinements which greatly extends the expres-
siveness of above technique to permit the specification and automatic verification
of various higher-order properties.

Note: We are including the below text to make this document self-contained; the
bulk of this work originally appeared in [6].

1 Introduction

Refinement types offer an automatic means of verifying semantic properties of pro-
grams, by decorating types with predicates from logics efficiently decidable by modern
SMT solvers. For example, the refinement type {v: Int | v > 0} denotes the ba-
sic type Int refined with a logical predicate over the “value variable” v. This type
corresponds to the set of Int values v which additionally satisfy the logical predicate,
i.e., the set of positive integers. The (dependent) function type x:{v:Int| v >
0} -> {v:Int| v < x} describes functions that take a positive argument x and
return an integer less than x.

Refinement type checking reduces to subtyping queries of the form
Γ ` {τ :ν | p} � {τ :ν | q}, where p and q are refinement predicates. These sub-
typing queries reduce to logical validity queries of the form [[Γ]] ∧ p⇒ q, which can be
automatically discharged using SMT solvers [2]. Similarly, we have shown using the
technique of Liquid Types [5] that refinement type inference, and hence, verification
of higher-order programs, reduces to solving a system of Horn-clauses which are
essentially the above implications with logical variables representing unknown (i.e., to
be inferred) refinements.

Unfortunately, the automatic verification offered by refinements has come at a price:
to ensure decidable checking with SMT solvers, the refinements are quantifier-free
predicates drawn from a decidable logic. This significantly limits expressiveness by
precluding specifications that enable abstraction over the refinements (i.e., invariants).

For example, consider the following higher-order for-loop:

for :: Int -> Int -> a -> (Int -> a -> a) -> a
for lo hi x body = loop lo x

where
loop i x

| i < hi = loop (i+1) (body i x)
| otherwise = x

Now, consider the following three clients of the for loop:

sum :: Int -> Int
sum n = for 0 n (\i tot -> i + tot)

range :: Int -> Int -> Int
range n = for 0 n (\i xs -> i : xs)

init :: Vec a -> a -> Int -> Vec a
init a x n = for 0 n a (\i -> set i x)

Assume that set i x v returns the vector v updated at index i with the value x.
Now, how would we verify that:

– sum returns a value that is larger than n ?
– range returns a decreasing list of integers between n and 0 ?
– init returns a vector whose first n elements are equal to x?

In a first-order setting, we would write (or infer) different loop invariants that de-
scribed the machine’s state at the ith iteration. For example, in init, an invariant
stating the first i elements of the vector were already initalized to x.

However, in a higher-order setting we require a means of abstracting over possible
invariants. That is, we require some way of summarizing the behavior of for that is
specific enough to expose the loop index i but generic enough to apply to each of the
three call-sites.

In this tutorial, we will describe a new technique called abstract refinement types
which enable abstraction (quantification) over the refinements of data- and function-
types. The main idea is that we can preserve SMT-based decidable analysis (checking
and inference) by encoding abstract refinements as uninterpreted propositions in the
refinement logic.

First, we illustrate how abstract refinements yield a variety of sophisticated means
for reasoning about high-level program constructs, including: parametric refinements
for type classes, index-dependent refinements for key-value maps, recursive refinements
for data structures, and inductive refinements for higher-order traversal routines.

Second, we demonstrate that type checking remains decidable by showing a fully
automatic procedure that uses SMT solvers, or to be precise, decision procedures based
on congruence closure [4] to discharge logical subsumption queries over abstract re-
finements.

2

Third, we show that the crucial problem of inferring appropriate instantiations for
the (abstract) refinement parameters boils down to inferring (non-abstract) refinement
types, which we have previously automated via the abstract interpretation framework
of Liquid Types [5].

Finally, we have implemented abstract refinements in LIQUIDHASKELL, a new Liq-
uid Type-based verifier for Haskell. We will present a demo using LIQUIDHASKELL to
concisely specify and verify a variety of correctness properties of several programs
ranging from microbenchmarks to some widely used Haskell libraries.

2 Abstract Refinement Types

Abstract Refinement Types [6], are a means of enhancing expressiveness of a refine-
ment system, while preserving (SMT-based) decidability. The key insight is that we
avail quantification over the refinements of data- and function-types, simply by encod-
ing refinement parameters as uninterpreted propositions within the refinement logic.
We illustrate how this mechanism yields a variety of sophisticated means for reason-
ing about programs, including: inductive refinements for reasoning about higher-order
traversal routines, compositional refinements for reasoning about function composition,
index-dependent refinements for reasoning about key-value maps, and recursive refine-
ments for reasoning about recursive data types.

2.1 The key idea

Consider the monomorphic max function on Int values. We give max a refinement
type, stating that its result is greater or equal than both its arguments:

max :: x:Int -> y:Int -> {v:Int | v >= x && v >= y}
max x y = if x > y then x else y

If we apply max to two positive integers, say n and m, we get that the result is greater
or equal to both of them, as max n m :: {v:Int | v >= n && v >= m}.
However, we can not reason about an arbitrary property: If we apply max to two even
numbers, can not verify that the result is also even. Thus, even though we have the
information that both arguments are even on the input, we lose it on the result.

To solve this problem, we introduce abstract refinements which let us quantify or
parameterize a type over its constituent refinements. Using abstract refinements, we can
type max as

max :: forall <p::Int->Bool>. Int<p> -> Int<p> -> Int<p>

where Int<p> is an abbreviation for the refinement type {v:Int | p(v)}. Intu-
itively, an abstract refinement p is encoded in the refinement logic as an uninterpreted
function symbol, which satisfies the congruence axiom [4]

∀X,Y : (X = Y)⇒ P (X) = P (Y)

3

It is trivial to verify, with an SMT solver, that max enjoys the above type: the input
types ensure that both p(x) and p(y) hold and hence the returned value in either
branch satisfies the refinement {v:Int | p(v)}, thereby ensuring the output type.

In a call site, we simply instantiate the refinement parameter of max with the con-
crete refinement, after which type checking proceeds as usual. As an example, suppose
that we call max with two even numbers:

n :: {v:Int | even v}
m :: {v:Int | even v}

Then, the abstract refinement can be instantiated with a concrete predicate even,
which will give max the type

max [even] ::
{v:Int | even v} -> {v:Int | even v} -> {v:Int | even v}

where the expression in brackets is the refinement instantiation. Since both n and m
are even numbers, they satisfy the function’s preconditions, thus we can apply them to
max, to get an even result:

max [even] n m :: {v:Int | even v}

This is the basic concept of abstract refinements, which as we shall see, have many
interesting applications.

2.2 Function Composition

As a next example, we present how one can use abstract refinements to reason about
function composition.

Consider a plusminus function that composes a plus and a minus operator:

plusminus :: n:Int
-> m:Int
-> x:Int
-> {v:Int | v = (x - m) + n}

plusminus n m x = (x - m) + n

In a first order refinement system we can verify that the function’s behaviour is captured
by its type. However, consider an alternative definition that uses function composition
(.):: (b -> c)-> (a -> b)-> a -> c.

plusminus n m x = plus . minus
where plus x = x + n

minus x = x - m

It is unclear how to give (.) a (first-order) refinement type that expresses that the result
can be refined with the composition of the refinements of both arguments results. Thus,
this definition of plusminus can not have the previous descriptive type.

4

Typing function composition. To solve this problem, we can use abstract refinements
and give (.) a type:

(.) :: forall < p :: b -> c -> Bool
, q :: a -> b -> Bool>.

f : (x:b -> c<p x>)
-> g : (x:a -> b<q x>)
-> x : a
-> exists[z:b<q x>]. c<p z>

The trick is once again to quantify the type over refinements we care about. This time,
we use two abstract refinements: the refinement p of the result of the first function f
and the refinement q of the result of the second function g. For any argument x, we use
an existential to bind the intermediate result to z = g x, so z satisfies q at x, and the
result satisfies p at the intermediate result.

Using function composition. With this type for function composition, user functions
get the concrete refinement of the final result to be the composition of the two refine-
ments of the argument functions.

Back to the plusminus example, with the appropriate refinement instantiation we
get the concrete refinement type for function composition:

(.) [{\x v -> v = x + n}, {\x v -> v = x - m}]
:: f : (x:b -> {v:c | v = x+n})
-> g : (x:a -> {v:b | v = x-m})
-> x : a
-> exists[z:{v:b | v = x-m}]. {v:c | v = z+n}

The result type asserts that there exists a value z, which is indeed the intermediate
result, with the property z = x - m. With this, the final result is equal to z + n.
If our logic supports equality, as SMT solvers do, we can verify that the final result
is indeed equal to (x - m)+ n. In other words, we can verify the desired type of
plusminus.

2.3 Inductive Refinements

As a first application we present how abstract refinements allow us to formalize induc-
tion within the type system.

Consider a loop function that takes as arguments a function f, an integer n, a base
case z and applies the function f to the z, n times:

loop :: (Int -> a -> a) -> Int -> a -> a
loop f n z = go 0 z

where go i acc | i < n = go (i+1) (f i acc)
| otherwise = acc

5

Now consider a user function incr that uses loop and at each iteration increases the
accumulator by one:

incr :: Int -> Int -> Int
incr n z = loop f n z

where f i acc = acc + 1

The accumulator is initialized with z and at each loop’s iteration it is increased by
1. So, at the ith iteration, the accumulator is equal to z+i. There will be n iterations,
thus the final result will be z+n. This reasoning constitutes an inductive proof that
characterizes loop’s behaviour. However, it is unclear how to give loop a (first-order)
refinement type that describes its inductive behaviour. Hence, it has not been possible
to verify that incr actually adds its two arguments.
Typing loop. Abstract refinements allow us to solve this problem, while remaining
within the boundaries of SMT-based decidability. We give loop the following type:

loop :: forall <r :: Int -> a -> Bool> .
f : (i:Int -> a<r i> -> a<r (i+1)>)

-> n : {v:Int | n >= 0}
-> z : a<r 0>
-> a<r n>

The trick is to qualify over the invariant r that loop establishes between the loop
iteration and the accumulator. Then the type signature encodes induction on natural
numbers: (1) n should be a natural number, thus a non-negative integer, (2) the base case
z should satisfy the invariant at 0, (3) in the inductive step, f uses the old accumulator
to create the new one, thus if the old accumulator satisfies the invariant on the iteration
i, the new one, as constructed by f, should satisfy the invariant at i+1. If these four
conditions hold, we conclude that the result satisfies the invariant at n. This scheme
is not novel [1]; what is new is the encoding, via uninterpreted predicate symbols in a
SMT-decidable refinement type system.
Using loop. We can use this expressive type of loop to verify inductive properties of
user functions:

incr :: n:{v:Int|v >= 0} -> z:Int -> {v:Int|v = n + z}
incr n z = loop [{\i acc -> acc + i}] f n z

where f i acc = acc + 1

In the above example, the expression in brackets denotes the instantiation of the ab-
stract refinement. For purpose of illustration we make abstract refinement instantiation
explicit, but it could be automatically inferred via liquid typing [6].

2.4 Higher-Order Structure Traversals

Next, we generalize the previous approach and explain how abstract refinements allow
us to formalize some kinds of structural induction within the type system.

6

Measures. First, let us formalize a notion of length for lists within the refinement logic.
To do so, we define a special len measure by structural induction

measure len :: [a] -> Int
len [] = 0
len (x:xs) = 1 + len(xs)

We use the measures to automatically strengthen the types of the data constructors[3]:

data [a] where
[] :: forall a.{v:[a] | len(v) = 0}
(:) :: forall a.a -> xs:[a] -> {v:[a]|len(v)=1+len(xs)}

Note that the symbol len is encoded as an uninterpreted function in the refinement
logic, and is, except for the congruence axiom, opaque to the SMT solver. The mea-
sures are guaranteed, by construction, to terminate, and so we can soundly use them as
uninterpreted functions in the refinement logic. Notice also, that we can define multiple
measures for a type; in this case we simply conjoin the refinements from each measure
when refining each data constructor.

With these strengthened constructor types, we can verify, for example, that append
produces a list whose length is the sum of the input lists’ lengths:

append :: l:[a] -> m:[a] -> {v:[a]|len(v)=len(l)+len(m)}
append [] zs = zs
append (y:ys) zs = y : append ys zs

However, consider an alternate definition of append that uses foldr

append ys zs = foldr (:) zs ys

where foldr :: (a -> b -> b)-> b -> [a] -> b. It is unclear how to
give foldr a (first-order) refinement type that captures the rather complex fact that
the fold-function is “applied” all over the list argument, or, that it is a catamorphism.
Hence, hitherto, it has not been possible to verify the second definition of append.
Typing Folds. Abstract refinements allow us to solve this problem with a very ex-
pressive type for foldr whilst remaining firmly within the boundaries of SMT-based
decidability. We write a slightly modified fold:

foldr :: forall <p :: [a] -> b -> Bool>.
(xs:[a] -> x:a -> b <p xs> -> <p (x:xs)>)

-> b<p []>
-> ys:[a]
-> b<p ys>

foldr op b [] = b
foldr op b (x:xs) = op xs x (foldr op b xs)

The trick is simply to quantify over the relationship p that foldr establishes between
the input list xs and the output b value. This is formalized by the type signature, which

7

encodes an induction principle for lists: the base value b must (1) satisfy the relation
with the empty list, and the function op must take (2) a value that satisfies the relation-
ship with the tail xs (we have added the xs as an extra “ghost” parameter to op), (3) a
head value x, and return (4) a new folded value that satisfies the relationship with x:xs.
If all the above are met, then the value returned by foldr satisfies the relation with the
input list ys. This scheme is not novel in itself [1] — what is new is the encoding, via
uninterpreted predicate symbols, in an SMT-decidable refinement type system.
Using Folds. Finally, we can use the expressive type for the above foldr to verify
various inductive properties of client functions:

length :: zs:[a] -> {v: Int | v = len(zs)}
length = foldr (_ _ n -> n + 1) 0

append :: l:[a] -> m:[a] -> {v:[a]| len(v)=len(l)+len(m)}
append ys zs = foldr (_ -> (:)) zs ys

The verification proceeds by just (automatically) instantiating the refinement parameter
p of foldr with the concrete refinements, via Liquid typing:

{\xs v -> v = len(xs)} -- for length
{\xs v -> len(v) = len(xs) + len(zs)} -- for append

2.5 Index-Dependent Invariants

Next, we illustrate how abstract invariants allow us to specify and verify index-
dependent invariants of key-value maps. To this end, we encode vectors as functions
from Int to some generic range a. Formally, we specify vectors as

data Vec a <dom :: Int -> Bool, rng :: Int -> a -> Bool>
= V (i:Int<dom> -> a <rng i>)

Here, we are parameterizing the definition of the type Vec with two abstract refine-
ments, dom and rng, which respectively describe the domain and range of the vector.
That is, dom describes the set of valid indices, and rng specifies an invariant relating
each Int index with the value stored at that index.
Describing Vectors. With this encoding, we can describe various vectors. To start with
we can have vectors of Int defined on positive integers with values equal to their index:

Vec <{\v -> v > 0}, {_ v -> v = x}> Int

Or a vector that is defined only on index 1 with value 12:

Vec <{\v -> v = 1}, {_ v -> v = 12}> Int

As a more interesting example, we can define a Null Terminating String with length
n, as a vector of Char defined on a range [0, n) with its last element equal to the

8

terminating character:

Vec <{\v -> 0 <= v < n}
,{\i v -> i = n-1 => v = ‘\0‘}> Char

Finally, we can encode a Fibonacci memoization vector, which can be used to efficiently
compute a Fibonacci number, that is defined on positive integers and its value on index
i is either zero or the ith Fibonacci number:

Vec <{\v -> 0 <= v}
,{\i v -> v != 0 => v = fib(i)}> Char

Using Vectors. A first step towards using vectors is to supply the appropriate types
for vector operations, (e.g., set, get and empty). This usually means qualifying over the
domain and the range of the vectors. Then, the programmer has to specify interesting
vector properties, as we did for the Fibonacci memoization, or the null terminating
string. Finally, the system can verify that user functions, that transform vectors, preserve
these properties. This procedure is applied in [6], where, with the appropriate types for
vector operations, we reason about functions that transform null terminating strings or
efficiently compute a Fibonacci number.

2.6 Recursive Invariants

Finally, we describe how we use abstract refinements to reason about properties of
recursive data structures. For the purpose of illustration, we define a refined version of
a List datatype with values of type a:

data List a <p :: a -> a -> Bool>
= N
| C (hd :: a) (tl :: List <p> (a <p h>))

We are parametrizing the List over an abstract refinement p that relates two elements
of type a. With this, the list is either the empty list N, or contains a head hd of type a
and a tail tl which is a list of elements of type a<p h>, i.e., these elements satisfy
the abstract refinement p at the head. Since this definition is recursively applied, the
abstract refinement p holds between each pair of elements in the list.
Unfolding Lists. To demonstrate the previous property, we will unfold a List with
three elements that satisfies an abstract refinement p. Consider such a list:

C h1 (C h2 (C h3 N)) :: List <p> a

If we unfold this list once, by the definition of the C data constructor, the first ele-
ment is of type a, while the rest is a list with values that satisfy p at the first el-
ement, i.e., (C h2 (C h3 N)):: List <p> a<p h1>. With a second unfold
we get that the second element satisfies p at the first element, i.e., h2::a<p h1>,
while the rest is a list with values that satisfy p at both the first and the sec-
ond element, i.e., C h3 N :: List <p> a<p h1 && p h2>. With the last

9

unfold we get that the last element satisfies p at all the previous elements, i.e.,
h3 :: a<p h1 && p h2>, while the empty list satisfies p at every list element,
i.e., N :: List <p> a<p h1 && p h2 && p3>, which holds as by its defini-
tion the empty list N satisfies any refinement.

Thus, p holds between every pair of the list, as for any two two elements hi and
hj, with i < j, at the ith unfold hj satisfies p at hi.

If we instantiate the abstract refinement p with the concrete refinement
{\h v -> h <= v}, that expresses that each values is greater than the head, we get
that each element is greater than all its previous in the list. So we describe an increasing
list:

type IncrList a = List <{\h v -> h <= v}> a

We can describe different list properties, by embedding appropriate concrete refine-
ments. For instance, if we use a refinement that expresses that each value is less than
the head, i.e., {\h v -> h >= v} or different from it, i.e., {\h v -> h ˜= v},
we can describe decreasing or unique element lists.

Using Lists. We can use the refined type for lists to verify list properties. As an exam-
ple, our system can verify that the following inserting sort algorithm actually returns an
increasing list.

insertSort :: (Ord a) => [a] -> IncrList a
insertSort = foldr insert N

insert :: (Ord a) => a -> IncrList a -> IncrList a
insert y N = C y N
insert y (C x xs) | y <= x = C y (C x xs)

| otherwise = C x (insert y xs)

Multiple Recursive Refinements. We can define recursive types with multiple pa-
rameters. For example, consider the following refined version of a type used to encode
functional maps (Data.Map):

data Tree k v <l :: k->k->Bool, r :: k->k->Bool>
= Bin { key :: k

, value :: v
, left :: Tree <l, r> (k <l key>) v
, right :: Tree <l, r> (k <r key>) v }

| Tip

The abstract refinements l and r relate each key of the tree with all the keys in the left
and right subtrees of key, as those keys are respectively of type k <l key> and k
<r key>. Thus, if we instantiate the refinements with the following predicates

type BST k v = Tree<{\x y -> x> y},{\x y-> x< y}> k v
type MinHeap k v = Tree<{\x y -> x<=y},{\x y-> x<=y}> k v
type MaxHeap k v = Tree<{\x y -> x>=y},{\x y-> x>=y}> k v

10

then BST k v, MinHeap k v and MaxHeap k v denote exactly binary-search-
ordered, min-heap-ordered, and max-heap-ordered trees (with keys and values of types
k and v).

3 Plan

We will plan our tutorial as follows:

– (10 mins, optional) Basic Refinement and Liquid Types we will start with a rapid
overview of refinement types and inference. Most likely audience members will
be familiar with these ideas, perhaps through the invited talks (e.g. Jagannathan or
Rybalchenko), and if so, we can skip this portion.

– (30 mins) Abstract Refinements We will work through the above examples to il-
lustrate how program analysis is implemented as refinement type inference, which,
in turn, reduces to Horn Clause solving. We will go over the above examples and
demonstrate them in the tool. Since the tool and materials are online at:

http://goto.ucsd.edu/˜rjhala/liquid/haskell/demo/#?demo=absref101.hs
http://goto.ucsd.edu/˜rjhala/liquid/haskell/demo/#?demo=ListSort.hs
http://goto.ucsd.edu/˜rjhala/liquid/haskell/demo/#?demo=Map.hs
http://goto.ucsd.edu/˜rjhala/liquid/haskell/demo/#?demo=Foldr.hs

it should be possible for the audience to follow along and modify as we go over the
examples.

– (10 mins, optional) Analyzing Libraries We will demonstrate in how we use the
above types to automatically verify ordering properties of complex, full-fledged
libraries like Data.Map which use several of the above ideas.

References

1. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004.

2. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
3. M. Kawaguchi, P. Rondon, and R. Jhala. Type-based data structure verification. In PLDI,

pages 304–315, 2009.
4. G. Nelson. Techniques for program verification. Technical Report CSL81-10, Xerox Palo

Alto Research Center, 1981.
5. P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.
6. N. Vazou, P. Rondon, and R. Jhala. Abstract refinement types. In ESOP 2013: European

Symposium on Programming. Springer, 2013.

11

	Tutorial: Type-Based Analysis of Higher-Order Programs

